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Unified

In the Second Episode for grades 9-10, we talked with the LPR Cup Participants about
time, and in grade 11 we offered a problem that could be elegantly solved using a geometric
method. In the Third Episode for grades 10-11, Participants were introduced to the vari-
ational principle and the use of symmetry to analyze the propagation of light in gradient
media.
This bzzzz is not for nothing All of this was not for nothing.
When studying objects that move at high speeds (at speeds comparable to the speed of light),
the classical laws of Newtonian mechanics become inapplicable and yield results that contra-
dict experiment. To describe the motion of such objects, a separate branch of physics was
developed, called the special relativity theory. As experimental data continued to accumu-
late, particularly in the study of gravity, it became clear that the theory could be developed
further, leading to the creation of the general relativity theory.
These branches of physics speak the language of geometry and use concepts such as: metric,
interval, curvature, and so on. In addition, these fields use the concepts of action and the
variational principle.
In this Episode, we will tell you about this special language, how it works, and what results
can already be obtained and understood with its help.
In section 1, we will discuss issues related to the special theory of relativity (SRT), after which
we will see that SRT is not sufficient to describe objects such as black holes (section 2), and
we will invite Participants in grades 10-11 to move on to the general relativity theory (section
3).
Good luck!
Charles the Cat

1 Kinematics of SRT
The special relativity theory (SRT) is a physical theory that has found a huge number of
practical applications and actively uses the language of geometry — specifically, the geometry
of Minkowski spacetime. In this section, we will study the kinematic aspects of SRT.

Calculating Distances in Different Coordinates
Let us consider a two-dimensional Cartesian coordinate system. In this case, the position of
points is specified by a pair of numbers (x, y). To find the coordinate of a point along one
of the axes by construction, we need to draw a straight line through this point parallel to
the other axis until it intersects the first axis. This algorithm is general and also works in
the case where the axes are not perpendicular to each other. It also follows that the lines of
constant coordinate along one axis are straight lines parallel to the other axis.
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A trajectory in such a coordinate system is defined as the dependence of one coordinate on
another, for example, y(x). The distance in such a coordinate system is determined using the
Pythagorean theorem, that is, a small element of length is written as:

ds2 = dx2 + dy2.

Note that in the case of non-perpendicular axes, the distance is determined by the law of
cosines:

ds2 = da2 + db2 + 2dadb cosα,

where α is the angle between the axes a and b.
The Cartesian coordinate system is not the only way to specify the position of a point on a
plane. There are many other options, for example, polar coordinates, in which the position
of a point is given by the distance from the origin r and the angle φ measured from some axis
(see the figure). When switching to polar coordinates, the distance takes the form:

ds2 = dr2 + r2dφ2.

y

x

ds

dx

dy

y

x

rdφ

r

dr

ds

φ

Postulates of SRT
The special relativity theory of is based on the following postulates:
1. The laws of physics are the same in all inertial reference frames.
2. The speed of light in vacuum is constant.
The first postulate is straightforward—we assume that processes in all inertial reference frames
(IRFs) occur in the same way, and therefore the physical laws are written in the same form.
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The second postulate, however, seems quite surprising, but it is precisely this postulate that
serves as the starting point for constructing SRT. The fact that the speed of light is constant
was experimentally confirmed in various experiments conducted in the second half of the 19th
century (the Fizeau experiment, the Michelson–Morley experiment, and others).

Galilean and Lorentz Transformations
In this section, we will consider the transition from one inertial reference frame K to another
inertial reference frame K ′.
Let us consider the motion of a material point along the x-axis with velocity v. When moving
from the laboratory reference frame to the reference frame of this point, the coordinates and
time are transformed according to the law

x′ = x− vt, y′ = y, z′ = z, t′ = t.

These transformations are called Galilean transformations. From them, it follows that the
velocities in this reference frame are

v′x =
dx′

dt′
= vx − v, v′y =

dy′

dt′
= vy, v′z =

dz′

dt
= vz.

Such a law of velocity transformation contradicts the second postulate of special relativity. Let
us confirm this with a classic example. Imagine a person running with a flashlight in hand. In
the reference frame associated with the running person, photons (or the electromagnetic wave)
have a speed equal to the speed of light in vacuum (hereafter denoted as c, whose numerical
value we will take to be approximately 3 · 108 m/s). In the reference frame associated with a
stationary observer, according to the Galilean transformations, light should have a speed of
c + u, where u is the speed of the running person, which contradicts the second postulate of
special relativity, according to which this speed must be equal to c.
Let us find the transformation of coordinates and time under which the speed of light does
not change when moving from one inertial reference frame to another (for convenience, we
will call these frames K and K ′). Since in any inertial reference frame the dependence x(t)
for a point moving at constant speed is linear, these transformations must map straight lines
to straight lines, i.e., they must be linear. In the general case, such transformations have the
form: {

x′ = Ax+Bt,

t′ = Cx+Dt.

1.1. (0 points) Using the fact that the dependence of the photon’s coordinate on time in two
different inertial reference frames K and K ′ is written as x = ct and x′ = ct′, find the
explicit form of the transformations that preserve the speed of light (these are called
Lorentz transformations): x′ = γ (x− vt) ,

t′ = γ
(
t− v

c2
x
)
,

where γ =
1√

1− v2/c2
is the relativistic ”gamma factor” and v — velocity of K ′ in

relatively to K.
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Note 1. In this example, we considered motion only along the x-axis, so the coordinates
along the y and z axes will have the form: y′ = y, z′ = z.
Note 2. It is clear that in the classical (non-relativistic) limit, when v/c ≪ 1, the Lorentz
transformations coincide with the Galilean transformations.
Note 3. From the expression for the ”gamma factor,” it follows that a reference frame moving
at a speed greater than the speed of light is not acceptable in this theory and has no physical
meaning. Thus, we can conclude that the speed of light in vacuum is not just a constant, but
the maximum allowed speed for any particle.
Using the fact that when transforming back from K ′ to K only the sign of the velocity v
changes, it is clear that the inverse Lorentz transformation has the form:x = γ (x′ + vt′) ,

t = γ
(
t′ +

v

c2
x′
)
,

1.2. (0 points) Category Hobbit There and Back Again. Make sure that by consecutively
applying two Lorentz transformations for the transitions K → K ′ → K, we obtain the
identity transformation for coordinates and time.

Let us consider the motion of the same material point along the x-axis in two inertial ref-
erence frames K and K ′. Writing the Lorentz transformation for two moments in time and
subtracting one system of equations from the other, we get:


dx′ = γ (dx− vdt) ,

dt′ = γ
(
dt− v

c2
dx
)
,

dy′ = dy,

dz′ = dz.

Minkowski Spacetime
Now that we have established that under Lorentz transformations, time—just like spatial
coordinates—transforms nontrivially, it makes sense to combine them into a single Minkowski
spacetime, where the coordinates of points are given by (ct, x, y, z).
1.3. (0.2 points) Draw and describe how, under Lorentz transformations for motion only

along the x-axis, the coordinate axes ct and x change.
In Minkowski spacetime, each point is an event that occurs at a certain spatial coordinate at
a certain moment in time. The distance between two events in Minkowski spacetime is called
the interval and is calculated as follows:

ds2 = gttc
2dt2 + gxxdx

2 + gyydy
2 + gzzdz

2 = c2dt2 − dx2 − dy2 − dz2.

The set of coefficients gtt, gxx, gyy, gzz is called the metric.
1.4. (0.2 points) Show that Lorentz transformations do not change the interval of Minkowski

spacetime (such transformations are called isometries of the metric).
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The square of the interval between two events can have any sign. Let us consider the events
(0,0) and (ct, x) and the interval ds between them.

• Events for which ds2 = 0 lie on the light cone. These events correspond to a photon
emitted from (0, 0) arriving at the point with spatial coordinate x at time t. Such an
interval ds is called lightlike (or null).

• Events for which ds2 < 0 lie outside the light cone. Such an interval is called spacelike.
• Events for which ds2 > 0 lie inside the light cone. Such an interval is called timelike.

Particles in Minkowski spacetime move along curves for which, for any small segment,
ds2 > 0. Such curves are called worldlines.

v = c

v = v1 < c

x

ct

Effects of Relativistic Kinematics
Let us consider a few examples that will demonstrate the peculiarities of Lorentz transforma-
tions.
1.5. (0.3 points) Suppose a rocket is flying through outer space at a speed v = c/2. The

interior cabin of the rocket has the shape of a rectangular parallelepiped, with light
sources installed at the centers of the ”nose” and ”tail.” Short flashes from these sources
occur simultaneously according to the clock of an astronaut inside the rocket. Find the
difference between the detection times of the flashes by a receiver located at the center
of the cabin, as measured in the reference frame of an observer on a stationary planet.
In the same reference frame, find the difference between the emission times of flashes
by the sources. The distance from the ”nose” to the ”tail” in the reference frame of a
rocket is L.

h

L

vvv

tail nose

1.6. (0.3 points) Depict the events of light detection and emission in the reference frames of
an astronaut and observer on the planet using Minkowski spacetime coordinates.
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1.7. (0.3 points) For these two observers, how are the times related for the light emitted
from the ”tail” source to first reach the ”floor” of the rocket, if the distance from the
source to the ceiling is h?

Now let us consider a real-life example from the world of particle physics.
1.8. (0.3 points) A meson is produced in the atmosphere at an altitude of about 10 km

above the Earth’s surface. Its proper lifetime (proper quantities for a given object are
those measured in its own rest frame) is approximately 2,2 µs. Estimate what speed
the meson must have in order to reach a detector on the Earth’s surface.

And now a few more abstract examples.
1.9. (0.5 points) A rod has a proper length l0. Two light bulbs, S1 and S2, are attached to

the ends of the rod. The rod moves with velocity v0 toward a stationary observer. Bulb
S1 emits light earlier than S2, so that both flashes reach the observer simultaneously.
At the moments the light is emitted, bulbs S1 and S2 are located at points x1 and x2,
respectively. What distance x1−x2 between the bulbs will the observer measure? (This
will be the apparent length of the rod, as perceived by the human eye or recorded by a
camera.)

x

y

l0
v0

S1 S2

1.10. (0.4 points) From the origin of the inertial reference frame K, short light pulses are sent
along the x-axis at intervals of time T (according to the clocks in K). Find the time
interval between the moments these signals are registered by an observer if the observer
is in the inertial reference frame K ′, which is moving towards system K with velocity
v = c/2.

The Twin Paradox
1.11. (0.2 points) A spaceship leaves Earth at speed βc at time t0 < 0 (by earthly clocks),

where β is a known constant. The captain’s twin brother remains on Earth. At time
t0/2 by earthly clocks, the spaceship makes a quick turnaround and returns to Earth
at the same speed as before. Analyze the astronaut’s journey in the reference frame of
the Earth observer and show that the astronaut’s proper time elapsed during the trip
is less than the proper time of his brother (in other words, the twin astronaut has aged
less).
Note that similar reasoning can be made from the point of view of the traveling brother,
who considers himself at rest and the Earth observer as moving relative to him at the
same speed. In this case, it would seem that the brother on Earth has aged less. Explain
qualitatively how to resolve this paradox, and approximately what the actual difference
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in proper times of the two twins will be (indicate which one will be older at the end of
the journey).

1.12. (0.8 points) A spaceship leaves Earth at speed v = βc at time t0 < 0 (by Earth’s clock),
where β is a known constant. The captain’s twin brother remains on Earth. At time
t0/2 (by Earth’s clock) he observes a light signal from the spaceship that means that
it begins to turn around. The worldline of the spaceship during the turnaround is a
segment of a hyperbola (in reference frame of the Earth):

(x− x0)
2

a2
− c2t2

a2
= 1.

Here, the parameters a and x0 are unknown, and c is the speed of light. After the
turnaround, the spaceship moves at a constant speed −v. Find by how much the ages
of the twins will differ when the spaceship returns to Earth. Assume that the speed
of the spaceship changes continuously along its entire worldline. You may neglect the
segments of the worldline where the spaceship accelerates and decelerates near Earth.
You may find the following integral useful:∫ b

a

dx√
x2 + 1

= ln

(
b+

√
b2 + 1

a+
√
a2 + 1

)
.

Momentum and Energy
Let us consider four-dimensional Minkowski spacetime with coordinates (ct, x, y, z). For uni-
formity of notation, these coordinates can be combined into a single 4-vector:

X =


ct
x
y
z

 =

(
ct
r

)
.

As mentioned earlier, the proper time for a system moving at velocity v is the time dτ
measured by a clock at rest in that system. Using the Lorentz transformation, we can obtain
the connection between dτ and dt, where dt is measured by a clock in the stationary frame:

dt =
dτ√

1− v2/c2
= γdτ.

Taking dt outside the square root in the expression for the interval, we get:

ds =
√
c2dt2 − dr2 = cdt

√
1− v2/c2 = cdτ,

where dr2 = dx2 + dy2 + dz2 is the spatial part of the interval. Thus, we have found a very
convenient connection: the interval, which is the analog of distance in spacetime, can be
parameterized by the proper time of the particle.
Let us define the 4-velocity vector as follows:

U =
d

dτ

(
ct
r

)
=

(
cdt/dτ
dr/dτ

)
= γ

(
c
v

)
,
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and also the 4-momentum of the particle:

P = mU =

(
γmc
γmv

)
.

Let us consider the expression for the time component of the 4-momentum and transform it
for the case of small velocities (v/c ≪ 1):

Pt =
mc√

1− v2/c2
= mc+

mv2

2c
+ . . . ≈ 1

c

(
mc2 +

mv2

2

)
.

The expression in parentheses coincides with the kinetic energy of massive particles with a
certain fixed addition. Therefore, we say that this is the definition of the relativistic energy
of such particles (E = γmc2):

Pt = E/c =⇒ P =

(
E/c
p

)
.

1.13. (0 points) By analogy with the interval, find the ”length” of the 4-momentum.
1.14. (0 points) There exist particles whose mass m is zero. They are called massless. Using

the result from the previous item, express the energy E of such particles in terms of
their momentum.
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2 Classical black hole
In the previous section, you became acquainted with the postulates of the Special Theory of
Relativity. It turns out that one of its direct consequences is the possibility of the existence
of special objects—black holes—which inevitably “absorb” any matter that comes sufficiently
close to them. In this section, you are invited to conduct your own investigation of such an
object.
Through prolonged observation of the position of a star near the center of the galaxy, it was
found that the star undergoes periodic motion in the gravitational field of a certain massive
object. Assume that the distance from the observation point to the center of the galaxy
is approximately 26 · 103 light-years, the period of the star’s orbit along its trajectory is
approximately 16 years, and the plane in which the star moves is perpendicular to the line of
sight.
2.1. (0.3 points) Using the experimental data, determine the possible positions of the object

attracting the star in the coordinates provided in the problem.
2.2. (0.4 points) Using the experimental data, determine the mass of the object attracting

the star.
2.3. (0.8 points) Assuming the object attracting the star is spherically symmetric and its

size is sufficiently small, determine the boundaries of the region around such an object
from which no signal can reach a distant observer.

Table 1: Coordinates of the star observation

x,′′ ·103 −36 −34 −31 −27 −21 −15 −8 −1 9 17 24 32 39
y,′′ ·103 122 132 143 153 164 172 178 182 185 184 181 175 167

The experimental data are given in an orthogonal coordinate system, where each axis is
measured in arcseconds (′′) and represents the angular deviation of a point from the origin.
You are allowed to use numerical methods to analyze the experimental data, and the param-
eters determined from them must be obtained with an accuracy of 5 · 10−3(′′).
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3 GRT
Тhe Theoretical Minimum
The general theory of relativity (GTR) is currently the most precise theory of classical gravity.
The main idea of GTR lies in the fact the the gravitational interaction is nothing, but the
consequence of the spacetime curvature.“Curvature” means that the metric in GTR g1 depends
on the point in spacetime:

ds2ОТО = gtt(r, t)dt2 +
3∑

i=1

2gti(r, t)dtdxi +
3∑

i,j=1

gij(r, t)dxidxj (1)

unlike the special relativity theory, where

ds2СТО = c2dt2 − dx2 − dy2 − dz2. (2)

Note that if the coordinates are indexed with the index i, dxi does not mean dx to the power
of i, but the infinitesimal change of the i-th coordinate. For example, (x, y, z) = (x1, x2, x3),
then if i = 1, dxi = dx, if i = 2, dxi = dy, if i = 3, dxi = dz 2. Further we write, for instance,
grr as if i = r, which means that this is a multiplier factor for dr2. Here dr2 means the second
power of dr.
The metric g can be found from the Einstein’s equation. For the full picture we provide it
here:

Rµν −
R

2
gµν =

8πG

c4
Tµν . (3)

The right side of this equation is determined by the distribution of the mass and its motion.
The left side is calculated from the metric g.
For convenience, we use the system of units, where the speed of light in vacuum is unity:
c = 1. This means that the dimensions of dt and dx are the same, and the proper time dτ
coincides with the length of the world line ds.
We are interested in the motion of the probe particles in vacuum in the gravitational field of
the spherically symmetrical object of mass M , which is located in the start of the coordinates.
Such an object might be a planet, a star, a black hole. Since we consider motion in vacuum
and neglect the gravitational field of particles, the right side of the equation (3) is zero area
of spacetime we are interested in. Because of the spherical symmetry of the massive object,
we are looking for the spherically-symmetrical solution of the equation (3), which is called
the Schwarzsсhild solution. It turns out that it is unique and has the following form:

ds2 =
(
1− rg

r

)
dt2 − dr2(

1− rg
r

) − r2(dθ2 + sin2 θ · dφ2). (4)

The parameter rg is called the Schwarzschild’s radius. As we will see further, it is determined
only by the mass M .

1By g we mean a set of functions gtt, gtx, gty, gtz, gxx, gyy, gzz, gxy, gxz, gyz. In spherical coordinates the
indices (r, φ, θ) will be instead of (x, y, z)

2In the Cartesian coordinates (x, y, z) the squared spacetime interval equals
ds2 = gtt(r, t)dt2 + 2gtx(r, t)dxdt+ 2gty(r, t)dydt+
+ 2gtz(r, t)dzdt+ gxx(r, t)dx2 + gyy(r, t)dy2 + gzz(r, t)dz2 + 2gxy(r, t)dxdy + 2gxz(r, t)dxdz + 2gyz(r,t)dydz.
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3.1. (0 points) Find gtt, grr, gθθ, gφφ, gtr, gtθ, gtφ, grθ, grφ, gθφ in the notations of the equation
(1) for the metric (4).

If angles θ and φ are constant, i. e. if we are interested only in the radial motion, in other
words the motion in the plane (t, r), this solution simplifies:

ds2 =
(
1− rg

r

)
dt2 − dr2(

1− rg
r

) . (5)

In GTR for the description of the particles motion the laws, which are analogous to the
Fermat’s principle, are used. The principle of Fermat describes the motion of light in space
with the given refractive index n(x,y). Let us describe these laws.
The motion of a free particle of mass m in the curved spacetime is defined by the principle
of the least action: a particle moves from point A to point B along the world line γ, which
minimizes3 the integral, called action Sγ

4:

Sγ = −
∫
γ

mds. (6)

It is clear that the action of the free particle is the length of the world line γ in the spacetime
with metric g up to a multiplier.
Such a way to determine the world line (trajectory) of a particle should remind one of the
Fermat’s principle in the ray optics (see. the 3rd Episode 10-11 grades). Indeed, the squared
optical path equals

ds2 = n2dl2 = n(x, y)2dx2 + n(x, y)2dy2.

It coincides with (1) in two space dimensions. Meanwhile, all components gij are the same
and equal to n2.
From (6) one can obtain the equations for r(τ), t(τ). The solutions of these equations are
called geodesics. It can be shown that there are three types of geodesic lines:

• Timelike geodesics: in any point ds2 > 0;
• Lightlike geodesics: in any point ds2 = 0;
• Spacelike geodesics: in any point ds2 < 0;

Timelike geodesics are the world lines for massive particles. We are also interested in the
lightlike geodesics (as one can easily guess, the light follows these geodesics). They can be
obtained in the limit m → 0 from timelike geodesics. It corresponds to the fact, that the light
particles, photons, have a zero mass m.
However, we will not solve the geodesics equations explicitly. We will find the world lines of
the particles, using the action’s (6) symmetries, instead.

3or maximizes
4The capital letter Sγ will always denote the action on the curve γ, and the lowercase letter sγ — length γ.
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t = rt = −r

Figure 1: Lightlike, timelike и spacelike geodesics in the Minkovskii’s space (2).

Motion in the plane (t, r)

Let us study the motion of a particle of given mass m in the plane (t, r) in the spacetime with
metric (5) with the given Schwarzschild’s radius rg. Let ACDB be a world line of a particle,
and a curve A′C ′D′B′ is obtained from it by the shift on dt, i. e. tA′−tA = tB′−tB = tC′−tC = tD′−tD = dt
(see the picture). Consider the coordinates of the points A, B, C, D as known, as well as the
fact dt ≪ sAC/(tC − tA), sBD/(tB − tD).

A

A′
C

C ′

D

D′
B

B′

r

t

tA

tA + dt

Let us choose the points C,A and B,D close to each other, so that we can assume AC, BD are
segments. It means, for instance, that SAC = −m∆sAC = −m

√
gtt(tC − tA)2 + grr(rC − rA)2.

3.2. (0.2 points) Find the approximation5 of SAC′ −SAC in the first order with respect to dt.
3.3. (0.2 points) Find the approximation of SBD′ −SBD in the first order with respect to dt.
3.4. (0.2 points) Find SCD − SC′D′ .
3.5. (0 points) Since ACDB minimizes (6), the first order approximation of SACDB−SAC′D′B

should be zero. Derive the conservation law from this condition.
As you known from the special relativity theory, the relativistic expression for the energy of

5see 0-th Hint for the 3rd Episode in the 10-11th Grages
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a particle has the following form

E = γmc2 =
mc2√

1− v2/c2
= mc2

cdt√
c2dt2 − dx2

.

The expression in this form can be generalized for the GRT case:

E =
mgttdt√

gttdt2 + grrdr2
= mgtt

dt

ds
. (7)

From 3.5 it is clear, the energy defined this way is conserved, i. e. does not depend on the
point, where it is calculated. Let us check the correctness of the limit transitions. To do this,
consider the case of small v0 = dr/dt and rg/r0. For this case we find:

E(v0, r0) ≈ m+
mv20
2

− α
rg
r0
. (8)

The obtained expression (8) must coincide with the energy of a particle in the gravitational
field of a body with mass M (known from Newton’s theory of gravity) up to an additive
constant.
3.6. (0.1 points) Find α, decomposing (7) to the first order of v20 and rg/r0. Comparing

the result with Newton’s result, write rg in terms of the mass M and the gravitation
constant G.

Let us solve (7) with respect to t:

E = mgtt
dt

ds
=⇒ m2g2ttdt

2 = E2(gttdt
2 + grrdr

2), =⇒ dt = ±
√
−grr
gtt

dr√
1− m2

E2 gtt

.

We obtain the equation for the world line t(r, E):

t(r, E)− t0 = ±
r∫

r0

dr(
1− rg

r

)√
1− m2

E2

(
1− rg

r

) . (9)

Falling into the Black Hole
Let the considered massive object be a black hole. It means that the mass M is concentrated
inside the event horizon r = rg, meanwhile its distribution inside the horizon is unknown, but
we assume that all the mass M is located in the center of coordinates. Consequently we may
use6 the obtained equation for the world line (9) r ⩾ rg, maybe at r < rg. Let us study the
properties of the obtained world lines (9). For the convenience we write the equation for the
velocity of a particle:

v =
dr

dt
= ±

(
1− rg

r

)√
1− m2

E2

(
1− rg

r

)
. (10)

Consider a particle that moves away from the black hole in the region of r > rg (sign «+» in
expression (10)).
3.7. (0.1 points) At which E will the particle not reach the infinity and turn round?

6Reminder: the metric (1) was obtained for vacuum, i. e. when there is no mass is in the area of motion.
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3.8. (0.2 points) Let the energy of a particle E so that it does not reach the infinity. What
is the maximal distance rmax?

Now consider the motion of the particle after it turned round (sign «−» in expression (10)).
In such motion r decreases, becoming closer to rg. To understand, what happens to t(r, E)
at r → rg, we need the following mathematical statement:∫ x

x0

1

ax+ b
dx =

1

a
ln

ax+ b

ax0 + b
,

∫ x

x0

1

xα
dx =

1

(α− 1)xα−1
− 1

(α− 1)xα−1
0

, where α ̸= 1.

(11)
Here we see that the first integral is diverging (i. e. goes to infinity) when x → −b/a, but the
second integral has a finite limit 1/((α− 1)xα−1

0 ) at α < 1.
From this mathematical statement, one can find that the time of falling onto the horizon
t(rg, E) (see (9)) is infinite. It is true even for the lightlike geodesics, i. e. when m = 0. For
this reason, the outside observer never sees that the particle has reached the event horizon of
a black hole. Does it mean that the particle will not reach it? To address this question, we
need to calculate the proper time of the particle:
3.9. (0.2 points) Find the change of the proper time of a particle τ(r, E)− τ0.

3.10. (0 points) Make sure that τ(rg, E) is finite.
Due to the fact that τ(rg, E) is finite, the particle will reach the event horizon and go through
it. Since the time t(rg, E) is infinite, we need to change the frame of reference to describe the
particle’s world line, i. e. change the coordinate system. Let us choose a new coordinate for
the time: (t, r) → (x+, r), where

x+ =


t+ r + rg ln

(
r

rg
− 1

)
, r > rg

t+ r + rg ln

(
1− r

rg

)
, r < rg.

(12)

3.11. (0.2 points) Express ds2 (see equation (5)) in terms of dx+ and dr. For this purpose
express dt from the equation (12) in terms of dx+ and dr.

3.12. (0.5 points) Find the equations of the lightlike geodesics in the coordinates (x+, r).
3.13. (0.3 points) Sketch the graphs of all types of the lightlike geodesics in one plane (t′,r),

t′ = x+ − r.
In each point of a plane (t′,r) two lightlike geodesics intersect. The world lines of particles
should lie inside a light cone (in the region where ds2 > 0) with a top at point (t′,r). From the
obtained results one can see that no particle, even light, cannot go beyond the event horizon
from within it.
Finally, let us note that from the result for the proper time, obtained in question 3.9, one can
see that τ(0, E) is finite. It means that the particle reaches the singularity in the center of a
black hole at a finite proper time.

The general case of a particle motion the Schwarzschild metric
Now let us consider the general case of a particle (with mass m) moving in the metric (4). As
it was, the corresponding action (6) remains unchanged under shifts of time, so the energy is
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still conserved:
E = mgtt

dt

ds
= const . (13)

The action (6) also has a spherical symmetry. Due to it the motion of a particle in space
(x, y, z) is happening in one plane. Without loss of generality, we can assume that the motion
occurs in a plane (x, y, 0).

y

z

x

r

r = const

φ

θ

In terms of coordintes (r, θ, φ) it means that θ = π/2. Then the metric (4) simplifies:

ds2 =
(
1− rg

r

)
dt2 − dr2(

1− rg
r

) − r2dφ2. (14)

The action with such metric has only a part of the spherical symmetry left: the symmetry
that corresponds to the rotations around the normal to the plane of motion of the particle.
In terms of coordinates it means the invariance under angle changes φ → φ+ dφ.
3.14. (0.6 points) Derive a conservation law corresponding to this symmetry (for example,

perform a similar reasoning to 3.2-3.5).
To fix the normalization, we remind that in the analogous problem of the Newtonian gravity
the law of angular momentum conservation JН is present. To define the angular momentum,
we divide the velocity vector into two components — radial and azimuthal:

v2 = v2r + v2φ, where vr =
dr

dt
, vφ = r

dφ

dt
.

Then JН = mrvφ. Let us denote the obtained conserved quantity (3.14) as J . We choose the
normalization J to obtain JН in the limit of small rg/r and v:

J = mr2
dφ

ds
.

To determine the world line of a particle, t, φ, r and parameters E, J need to be related. We
will parameterize the world line through r, then the equation of the world line is t(r, E, J),
φ(r, E, J). Consider the mass of a particle m, the Schwarzschild radius rg and initial coordi-
nate r0 to be known.
3.15. (0.1 points) Find t(r, E, J)− t0.
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3.16. (0.1 points) Find φ(r, E, J)− φ0.
In both questions the expression should be in the form of an integral, which are analogous to
(9).
Let us analyze the obtained results.
3.17. (0.3 points) How many types of the world lines are there when J = 0.9mrg? Describe

the particle motion on such world lines. Explain your answer.
3.18. (0.3 points) How many types of the world lines are there when J = 1.9mrg? Describe

the particle motion on such world lines. Explain your answer.
3.19. (0.3 points) How many types of the world lines are there when J = 2.9mrg? Describe

the particle motion on such world lines. Explain your answer.
3.20. (0.3 points) Find the boundary values J/(mrg), by passing which the possible types of

trajectories change, with the precision not worse than 0.01.

Perihelion precession of Mercury
Let us recall how the motion of a point in the gravitational field of a body with mass M occurs
in Newtonian theory. The equation of motion can be found using the law of conservation of
energy:

EN =
mv2

2
− GmM

r
= const .

Since, in addition to energy, the angular momentum JN = mrvφ = const is also conserved, it
is convenient to rewrite the energy conservation law in terms of JN:

EN =
mv2r
2

− GmM

r
+

J2
N

2mr2
= const .

Using these two conservation laws, it is easy to obtain the equation of the world line in the
Newtonian approximation:

tN(r, EN, JN)− t0 = ±m

r∫
r0

dr√
2mEN + 2Gm2M

r
− J2

N
r2

(15)

φN(r, EN, JN)− φ0 = ±JN

r∫
r0

1

r2
dr√

2mEN + 2Gm2M
r

− J2
N
r2

(16)

As is known from Kepler’s laws (and this can also be easily derived from (16)), if EN < 0,
the equation in (16) describes an ellipse with a focus at the origin. The equation of such an
ellipse has the form

rN(φ) =
pN

1− eN cosφ
,

where eN =
√

1− b2/a2 is the eccentricity, pN = b2/a, a is the semi-major axis, and b is the
semi-minor axis (see Wikipedia).
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x

y

−rmin rmin rmax

2a

2b

From (16) it is easy to see that

e =

√
1 +

2ENJ2
N

G2M2m3
, p =

J2
N

Gm2M
, a = −GmM

2EN
, b =

JN√
−2ENm

.

Equation (16) has the form

φN(r, EN, JN)−φ0 = ±JN

r∫
r0

1

r2
dr√

fN(r, EN, JN)
, where fN(r, EN, JN) = 2mEN+

2Gm2M

r
−J2

N
r2

.

If the point makes one complete revolution along the trajectory, i. e., r changes from rmin to
rmax and back, then the angle changes by 2π:

2JN

rmax∫
rmin

1

r2
dr√

fN(r, EN, JN)
= 2π. (17)

The equation obtained in section 3.16 has a similar form:

φ(r, E, J)− φ0 = ±J

r∫
r0

1

r2
dr√

f(r, E, J)
.

We want to obtain the correction to the result (17) from general relativity. To do this, let us
consider the motion of a particle with energy E = m+ E and angular momentum J . We will
assume that

|E|
m

∼ J2

m2r2
∼ v2 ∼ rg

r
≪ 1, (18)

i. e., these are small quantities of the same order.
It can be shown that, to second order (i. e., up to squares and products of the small quantities
in (18)), the following equality holds:

f(m+ E , J, r) = fN(Ẽ , J̃ , r̃), (19)
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where Ẽ = E(1+ δE), J̃2 = J2(1− δJ), r̃ = r+ δr. The corrections δE , δJ , and δr do not depend
on r, and are small quantities of the order δE ∼ δJ/J

2 ∼ δr/r ∼ E/m. They can be found by
expanding the difference f(m+E , J, r)−fN(Ẽ , J̃ , r̃) to second order in smallness and equating
to zero all remaining coefficients at powers of r.
3.21. (0.2 points) Find δE.
3.22. (0.2 points) Find δJ .
3.23. (0.2 points) Find δr.
Using (19), we can find the correction of interest:

∆φgr − 2π = 2

rgr,max∫
rgr,min

J

r2
dr√

f(r,m+ E , J)
− 2

r̃max∫
r̃min

J̃

r̃2
dr̃√

fN(r̃, m+ Ẽ , J̃)
≈

≈ 2

r̃max∫
r̃min

(
J

r2
− J̃

r̃2

)
dr̃√

fN(r̃, m+ Ẽ , J̃)
.

Expanding the difference in the round brackets, we get

J

r2
− J̃

r̃2
≈ J̃

r̃2

(rg
r̃
− 2A+ 3A

)
,

where A does not depend on r. It can be shown that the integral of the term with rg/r− 2A
does not contribute.
3.24. (0 points) If you know how to perform variable substitutions in integrals, show this

using the substitution r → ξ = rg/r − 2A.
Then, using (17), we obtain the answer:

∆φgr − 2π = 2π · 3A.

3.25. (0.2 points) Express A in terms of m, rg, and J .
3.26. (0 points) Express A in terms of the geometric parameters of the orbit and obtain the

numerical value of ∆φgr − 2π for Mercury.

First hint — 28.05.2025 20:00 (Moscow time)
Second hint — 30.05.2025 12:00 (Moscow time)
Final of the fifth round — 01.05.2025 18:00 (Moscow time)
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