

Кубок ЛФИ

9.s03.e04

Что может дать один человек другому, кроме капли тепла? И что может быть больше этого? Эрих Мария Ремарк

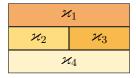
Опыты в Шестерочке

Часть 1. Термическое сопротивление

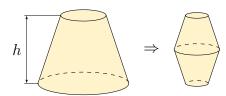
В этой задаче речь пойдет про Пашу Шишкина и его опыты в шестерочке.

Рассмотрим узкий слой вещества толщиной Δx и площадью S такой, что с одной стороны он нагрет до температуры T_1 , а с другой – до температуры T_2 . Мощность, равная количеству теплоты, которое передается за небольшой интервал времени Δt от одной поверхности другой, равна:

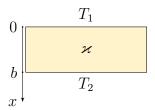
$$P = \frac{\varkappa}{\Lambda x} S(T_2 - T_1),$$

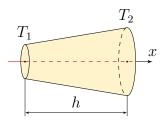

где \varkappa – коэффициент теплопроводности. Разность температур называют температурным напором, а величину $\Delta x/\varkappa S$ – термическим сопротивлением.

В первой части задачи нам надо найти различные параметры деталей, которые сделал Паша Шишкин.


1. $(0,5 \, \text{балла})$ Три слоя одинаковой толщины b и площадью основания S лежат друг на друге так, как показано на рисунке. Коэффициенты теплопроводности слоев известны и равны \varkappa_1 , \varkappa_2 и \varkappa_3 . Найдите общее термическое сопротивление такой системы.

\varkappa_1
\varkappa_2
\varkappa_3


2. $(0.5\ балла)$ Две пары слоев площадью S и S/2 соответственно соединили так, как показано на рисунке. У всех слоев одинаковая толщина b. Найдите, чему равно термическое сопротивление такой системы, если коэффициенты теплопроводности \varkappa_i этих слоев известны.


3. (1 балл) Деталь из чугуна в форме правильного усеченного конуса высоты h имеет термическое сопротивление теплопередачи R_0 . Деталь заменяют двумя подобными усеченными конусами размерами в два раза меньше, соединенными одинаковыми основаниями друг с другом так, как показано на рисунке. Помогите найти Паше Шишкину значение термического сопротивления такой системы.

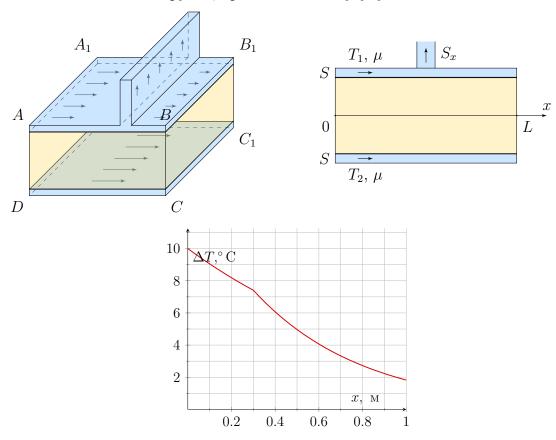
4. (1 балл) Одна поверхность плоского чугунного слоя толщиной 10 мм имеет температуру $T_1 = 50$ °C, а другая $T_2 = 40$ °C. Считая, что температуры поверхностей поддерживаются постоянными, найдите распределение температуры внутри слоя чугуна.

5. (1 балл) Деталь из чугуна с известным коэффициентом теплопроводности \varkappa имеет форму усеченного конуса с известными радиусами оснований R_1 и R_2 и высотой h. Основания поддерживаются при постоянной температуре T_1 и T_2 . Найдите зависимость T(x). считайте что температура во всем сечении с постоянным х одинакова.

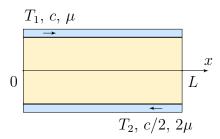
Примечание. Вам и Паше может помочь тот факт, что для силы гравитационного взаимодействия двух точечных тел массами m_1 и m_2 , можно ввести потенциальную энергию их взаимодействия, определяемую соотношением $U = -G(m_1m_2)/r_{12}$, где r_{12} – расстояние между телами.

Часть 2. Потоки жидкости и/или газов

Паша решил собрать разные виды охладительных (или нагревательных) систем вида слой жидкости – стенка – слой жидкости. В этой части задачи нас будут интересовать свойства таких систем.


6. Слой чугуна, поверхность которого имеет форму квадрата со стороной L, омывается с двух сторон одинаковыми жидкостями так, что они текут в одну сторону по труб-кам с одинаковой площадью сечения. Массовый расход жидкости на входе в систему в каждой трубке одинаковый. Во всех трубках скорости одинаковы.

Температуры жидкостей на входе в систему равны T_1 и $T_2 < T_1$. Считайте, что температура жидкости в вертикальном сечении отдельной трубки постоянна, а основной поток тепла направлен в плоскости рисунка перпендикулярно оси х. Потоком тепла в других направлениях можно пренебречь.


С одной стороны от чугунной стенки жидкость отводится по трубке с неизвестной площадью сечения. Скорость движения жидкости во всех трубках одинаковая. Зависимость разности температур жидкостей от координаты x представлена на рисунке. Найдите:

(а) (1 балл) Где располагается трубка, по которой отводят жидкость.

(b) (2 балла) Отношение площади сечения трубки, по которой отводится жидкость, к площади сечения трубки, прилегающей к чугуну.

7. (3 балла) Слой чугуна, поверхность которого имеет форму квадрата со стороной L, омывается с двух сторон одинаковыми жидкостями так, что они текут навстречу друг другу. Расстояние между плоскостями, которые омываются водой, равно b. Температуры жидкостей на входе в систему равны T_1 и $T_2 < T_1$. Температуру жидкости в вертикальном сечении трубки считайте постоянной, а основной поток тепла направлен в плоскости рисунка перпендикулярно оси х. Потоком тепла в других направлениях можно пренебречь. Массовый расход первой жидкости известен и в два раза меньше массового расхода второй, в то время как удельная теплоемкость первой жидкости в два раза больше. Считая, что коэффициент теплопроводности равен \varkappa , найдите зависимость T(x) порции первой жидкости, которая поступает в систему за интервал времени Δt .

Первая подсказка — 09.05.2022 14:00 (МСК)

Вторая подсказка — $11.05.2022 \ 14:00 \ (MCK)$

Окончание четвертого тура — 13.05.2022 22:00 (MCK)